Viral hit-and-run

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccination against a hit-and-run viral cancer

Cancers with viral aetiologies can potentially be prevented by antiviral vaccines. Therefore, it is important to understand how viral infections and cancers might be linked. Some cancers frequently carry gammaherpesvirus genomes. However, they generally express the same viral genes as non-transformed cells, and differ mainly in also carrying oncogenic host mutations. Infection, therefore, seems...

متن کامل

Hit-and-run mixes fast

It is shown that the “hit-and-run” algorithm for sampling from a convex body K (introduced by R.L. Smith) mixes in time O(nR/r), where R and r are the radii of the inscribed and circumscribed balls of K. Thus after appropriate preprocessing, hit-andrun produces an approximately uniformly distributed sample point in time O(n), which matches the best known bound for other sampling algorithms. We ...

متن کامل

Hit - and - Run Methods Zelda

A comment on Seiford. Journal of Productivity Analysis, 9(3), 279–281. Sarafoglou, N., & Haynes, K. E. (1996). University productivity in Sweden: A demonstration and explanatory analysis for economics and business programs. The Annals of Regional Science, 30, 285–304. Schroeder, R. G. (1973). A survey of management science in university operations. Management Science, 19, 895–906. Seiford, L. M...

متن کامل

Hit - and - Run is Fast and Fun ∗

The hit-and-run algorithm is one of the fastest known methods to generate a random point in a high dimensional convex set. In this paper we study a natural extension of the hit-and-run algorithm to sampling from a logconcave distribution in n dimensions. After appropriate preprocessing, hit-and-run produces a point from approximately the right distribution in amortized time O∗(n3).

متن کامل

Improving Hit-and-Run for global optimization

Improving Hit-and-Run is a random search algorithm for global optimization that at each iteration generates a candidate point for improvement that is uniformly distributed along a randomly chosen direction within the feasible region. The candidate point is accepted as the next iterate if it offers an improvement over the current iterate. We show that for positive definite quadratic programs, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genome Biology

سال: 2002

ISSN: 1465-6906

DOI: 10.1186/gb-spotlight-20020718-01